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Abstract

In the paper, we propose a triple triangular mesh protocol for mutual exclusion, in which the

nodes in the system are organized into a triangular mesh. The quorum size is k that is O�
p
N �,

where N is the number of nodes in the system and is equal to k�k�1�
2 . The protocol is fault-tolerant

up to �k � 2� site failures and communication failures in the worst case, even when such failures

lead to network partitioning.

(Key Words: Availability, distributed systems, fault tolerance, mutual exclusion, quorum consen-

sus.)
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1 Introduction

A distributed system consists of a set of distinct nodes and a communication network through

which nodes can communicate with each other by sending messages. The system goes on working

even a number of nodes failed. Each node is assumed to be fail-stop, i.e., a failed node will not

send out messages which will make alive nodes confused. Node or link failures or combinations

of both kind may divide the system into disjoint partitions. Nodes can communicate with nodes

residing in the same partition but have no way to communicate with nodes belonging to other

partitions.

To make distributed mutual exclusion protocols fault-tolerant to node and communication

failures, many researches apply the replica control strategies to achieve mutual exclusion. The

majority voting protocol [6] and the quorum consensus protocol [3] are such examples. However,

these protocols require high communication cost which is O�N� due to the large quorum size.

To reduce the overhead of achieving mutual exclusion while supporting fault tolerance, many

protocols imposing a logical structure on the network are proposed [1, 2, 4]. (Note that imposed

on the system is a logical structure which does not take into account the real topology of the

network). The hierarchical quorum consensus protocol (HQC) [4] requires O�N0�63� messages,

the tree quorum protocol [1] requires O�logN� messages in the best case and degrades gracefully,

and the grid protocol [2] requires O�
p
N� messages. All the quorums constructed from these

protocols can be used to replace the set of nodes in Maekawa’s protocol [5] to achieve mutual

exclusion.

In the paper, we propose a triple triangular mesh protocol for mutual exclusion, in which

the nodes in the system are organized into a triangular mesh. A quorum contains nodes from

some side of each of three subtriangles in the triangular mesh and the quorum size is k that is

O�
p
N�, where N is the number of nodes in the system and is equal to k�k�1�

2 . The protocol is

fault-tolerant up to �k � 2� site failures and communication failures in the worst case, even when

such failures lead to network partitioning. From our simulation study, the proposed protocol can

have higher availability and less quorum size than the grid protocol. Moreover, the quorum size

of the proposed protocol will be less than that in the HQC protocol when N is greater than or

equal to 15 and less than that in the tree quorum protocol when node failures exist.
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Figure 1: (a) A 6-triangular mesh (b) subtriangles associated with node 7 in a 6-triangular mesh.

2 The Triple Triangular Mesh Protocol

In this section, we present the triple triangular mesh (TTM) protocol, prove the correctness of the

protocol, and describe a property of the protocol.

2.1 Definitions

We organize nodes into a triangular mesh. A k-triangular mesh consists of a vertex set V and an

edge set E. V is defined as a set of �x� y�-tuples, where x� y are both integers, 0 � x � k � 1,

0 � y � k�1 and 0 � x�y � k�1. The y-axis is slanted to the right 30 degree to accommodate

the left-hand side of the right triangle. E is defined as a set of vertex pairs �v1� v2�, where v1

and v2 are in V , v1 � �x1� y1�, v2 � �x2� y2� and x1, y1, x2 and y2 satisfy one of the following

conditions: (1) x1�x2 � y2�y1 � 1� (2) x2�x1 � y1�y2 � 1� (3) j x1�x2 j � j y1�y2 j� 1�

A 6-triangular mesh is shown in Figure 1-(a). In this example, node 3 is at �0� 3� and node 13 is

at �3� 1�. The left-hand, right-hand and bottom sides of the right triangle are referred to as side

0, side 1 and side 2, respectively.

Given a node x residing inside the triangular mesh, we can draw three lines along those edges

of the triangular mesh, such that each of them is parallel with one side of the triangular mesh and

passes through the given node. Based on these three sides and three lines, three smaller triangles

are formed in the triangular mesh. Figure 1-(b) shows such an example, where node 7 is the given

center. We define a small triangle as subtriangle i such that one of its sides is a subset of side

i of the triangular mesh, and define subtriangle i’s two sides counterclockwisely, which are not

subsets of any side of the triangular mesh, as side (a) and side (b), respectively. Figure 2 shows
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Figure 2: Sides of subtriangles: (a) subtriangle 0; (b) subtriangle 1; (c) subtriangle 2.

sides of three subtriangles from Figure 1-(b).

Definition 1. Each quorum consists of a center and subquorum i, for i = 0, 1, 2. Subquorum i

contains all the nodes on either side (a) or side (b) of subtriangle i, and we refer to the former

as subquorum i-(a) and the latter as subquorum i-(b), respectively. Formally, subquorum i is a

sequence of nodes, �v0� � � � � vm�, where v0 is the center of the quorum, and vm is the ending node

of the subquorum. Any two adjacent nodes vj , vj�1, 0 � j � m in the subquorum must satisfy

the condition according to its type:

1. xj�1 � xj � �1 and yj�1 � yj , for subquorum 0-(a);

2. xj�1 � xj � �1 and yj�1 � yj � 1, for subquorum 0-(b);

3. xj�1 � xj and yj�1 � yj � 1, for subquorum 1-(a);

4. xj�1 � xj � 1 and yj�1 � yj , for subquorum 1-(b);

5. xj�1 � xj � 1 and yj�1 � yj � �1, for subquorum 2-(a);

6. xj�1 � xj and yj�1 � yj � �1, for subquorum 2-(b).

Also, we will call a quorum "associated with" node x if it uses node x as its center, and a

subquorum "associated with" node x if it is a subquorum of the quorum associated with node x.

Example 1. For a node residing inside a triangular mesh, there are eight quorums associated

with it. Figure 3 shows eight quorums associated with node a residing inside a 6-triangular mesh.

Example 2. For a node residing at one side of a triangular mesh but not at any corners, there are

four quorums associated with it. Figure 4 shows of four quorums associated with node a residing

at one side of the triangular mesh. (Note that the number of subtriangles generated depends on

the location of the center of the quorum.)
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Figure 3: Examples of quorums associated with a node a in a 6-triangular mesh where a resides
inside the triangle: (a)-(h).
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Figure 4: Examples of quorums associated with a node a in a 6-triangular mesh where a resides
at one side but is not at a corner: (a)-(d).
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2.2 Proof of Correctness

The following theorem is used to show that the proposed protocol can ensure mutual exclusion.

Theorem 1. Any two quorums of the triple triangular mesh protocol intersect.

Proof. We prove by first constructing a quorum x, then further construction of a quorum y will

intersect some node in quorum x. There are three cases which should be taken into account

according to where the center of quorum x is:

(1) If the center of quorum x is a node inside the triangular mesh, quorum x will divide the

triangular mesh into three regions and no nodes of quorum x belong to any region. Figure 3

is a demonstration. To prevent from intersecting quorum x, the center of quorum y should

reside in any region. Since every region can provide nodes of two sides, only the other

two regions can provide nodes of the third side which quorum y needs. The path from the

center of quorum y to another region will intersect some node of quorum x since every two

regions are separated by quorum x.

(2) If the center of quorum x resides on any of three sides but is not any of three corners, there

are three cases should be taken into account: none, one or two of x’s subquorums resides at

some side of the triangular mesh. When none of x’s subquorum resides at some side (ex.,

Figure 4-(a)), the triangular mesh is divided into three parts by quorum x. In a similar way

as in case (1), we can show that no other quorum can be constructed without intersecting

quorum x. If only one of x’s subquorum resides at some side, the triangle will be divided

into two regions (ex., Figures 4-(b)). Since every region can provide nodes of two sides,

only the other region can provide nodes of the third side which quorum y needs. The path

from the center of quorum y to another region will intersect some node of quorum x. If two

of x’s subquorums reside at some side of the triangle, quorum x is one side of the triangle

(ex., Figure 4-(c)), and quorum y will intersect quorum x at least one node since quorum y

must get at least one node from every side.

(3) If the center of quorum x is one of three corners, quorum xwill contain all nodes of one side

of the triangular mesh, quorum y will intersect quorum x at least one node since quorum y

must get at least one node from every side. �
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2.3 Property of the Protocol

Theorem 2. Given a k-triangular mesh, the quorum size of the proposed protocol is k, which is

proportional to
p
N , where N is the number of nodes in the system.

Proof. Assume that the �x� y�-tuple associated with the center of a given quorum is �x0� y0�,

subquorum 0 is a sequence of nodes �v0� � � � � vm�, where v0 is the center and vm is the ending

node. Take any two adjacent nodes vi�1 � �xi�1, yi�1�, and vi � �xi, yi�, the condition

�xi�1 � xi � �1� is true for all i � 0� � � � � m� 1. When we trace from the center to the ending

node, we find that the value of x in the �x� y�-tuple is changed from x0 to zero; therefore, there

are �x0 � 1� nodes in subquorum 0. Apply the same approach and notation to any two adjacent

nodes vi�1 and vi in subquorum 1, the condition ��xi�1 � yi�1� � �xi � yi� � 1� holds. Since

the value of �x � y� is changed from �x0 � y0� to �k � 1�, there are �k � x0 � y0� nodes in

subquorum 1. Similarly, for any two adjacent nodes vi�1 and vi in subquorum 2, the condition

�yi�1 � yi � �1� holds. Since the value of y is changed from y0 to 0, there are �y0 � 1� nodes

in subquorum 2. Since the center is counted three times, the number of nodes in the quorum is

�x0 � 1� � �k � x0 � y0� � �y0 � 1�� 2 � k. Given N � k�k�1�
2 nodes in a k-triangular mesh,

we get k �
p

2N � k � 1, i.e.,
p

2N � 1 � k �
p

2N . Apparently, k is of O�
p
N �. �

3 The Performance

In this section, some aspects of distributed mutual exclusion protocols imposing logical structures

are analyzed: quorum size, availability and fault tolerance. We compare these features of the

triple triangular mesh (TTM) protocol with the tree [1], the HQC [4], and the grid protocols [2].

(Note that since the write-write intersection property holds, the write quorums of the grid protocol

can be used to control accesses to a shared resource.)

3.1 Quorum Size

The number of messages required to construct a quorum is proportional to the size of the quorums.

In the HQC protocol [4], the quorum size is N0�63. In the tree protocol [1], the quorum size is

log2N and is increased up to dN�1
2 e as the number of node failures is increased. In the grid
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protocol [2], it organizes nodes into a M1 �M2 �� N� grid. Based on Theorem 2, the quorum

size in our k-triangular mesh protocol is k, which is �
p

2N �. Therefore, the quorum size in our

triple triangular mesh protocol is less than that in the grid protocol all the time, and is less than

that of the HQC protocol when N � 15. Although the quorum size in the tree protocol is less

than that in our protocol, if the node fails starting from the root to the leaf, and from the left

to the right, and the number of failed nodes is increased by one at a time, our protocol has less

quorum size than the tree protocol as node failure occurs. Take N � 15 as an example, where the

tree protocol and the triple triangular mesh protocol have a similar topology, when the number

of failed nodes is 1, in the worst case, the quorum size in our protocol is 5 and is 6 in the tree

protocol. (Note that when the number of failed nodes is greater than 7, in the worst case, there is

no quorum that can be constructed in the tree protocol.)

3.2 Availability

The availability is defined as the probability that a quorum can be constructed. We assume that

each node is assumed to be independent available with probability p. Since given a number of

node failures, the number of nodes prevented from constructing their associated quorums depends

on the relative positions among those failed nodes, it is difficult to get a close form of availability

in the triple triangular mesh protocol. Therefore, the availability of the triple triangular mesh

protocol is computed by first generating all possible combinations for nodes to be available or

unavailable, then we check each case to see whether a quorum can be constructed by a simulation

study. If a quorum can be constructed, we add the possibility of occurrence of this case into the

availability. The availability of the tree protocol and the HQC protocol are computed in the same

way. For a M1�M2 grid, we use the formula: �1� �1�p�M1�M2 � �1�pM1 � �1�p�M1�M2 to get

its availability [2]. Figure 5 shows the availability of these four protocols when N � 15. From

this figure, we observe that the proposed protocol has higher availability than the grid protocol

all the time, and also can have higher availability than the tree protocol when p � 0�92.
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Figure 5: A comparison of availability

3.3 Fault Tolerance

Our simulation reveals that in the worst case, the proposed protocol can tolerate up to �k � 1�

node failures when k � 4, and up to �k � 2� node failures when k � 5, where N � k�k�1�
2 .

This is because that there exist some patterns of �k � 1� node failures which disable all quorum

constructions. For example, in a k-triangular mesh, k � 5, the set consists of failed nodes whose

�x, y�-tuples satisfy one of the following conditions will make all quorums unavailable: for i �

1� � � � � k�1, (1) ( i�1
2 , i�1

2 ), i is odd; (2) ( i�2
2 , i�2

2 ), i is even. For example, the set of 5 failed nodes:

f 4, 6, 9, 12, 16 g in the 6-triangular mesh shown in Figure 1 will make all quorum constructions

impossible.

The above discussion can be summarized in Table 1 based on six criteria, where we consider

a M1 �M2 �� N� grid. The first two criteria are the quorum sizes in the best and worst cases,

respectively. The third criterion is the impact that a single node failure would have on the size of

a quorum. In the grid protocol, if the failed node belongs to a column included in the quorum,

then another �M1 � 1� nodes are needed to form another quorum. In the tree protocol, the failure

of the root will result in a requirement of another log2N nodes to construct a new quorum. In the

TTM protocol, in the worst case, we need another �k � 1� nodes to construct another quorum.
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Figure 6: The number of quorums which a node can participate in the TTM protocol when N =
15

The fourth criterion is whether the protocol is a fully distributed one. The tree protocol assigns

greater burden to the nodes with smaller level numbers. Therefore, the tree protocol is not a fully

distributed protocol. The HQC and the grid protocols are fully distributed ones. In the TTM

protocol, obviously, the nodes near the center bear greater burden than the nodes near the sides

or the corners as shown in Figure 6; therefore, it is not a fully distributed protocol. (Note that in

Figure 6, the total number of valid quorums is 45 when N=15, where the value inside the node

denotes the number of quorums which a node can participate.) The last two criteria are the number

of failed nodes which does not halt the system in the best and worst case, respectively. While

in the best case, all these four protocols can be fault-tolerant up to all node failures except those

nodes which have already constructed a quorum. While in the worst case, the tree, the HQC and

the grid tree protocol can be fault-tolerant up to �the quorum size� 1�, �the quorum size� 1�

and �minfM1� M2g � 1� failures, respectively. The TTM protocol tolerates up to �k � 2� node

failures according to the simulation results.

4 Conclusion

In this paper, we have proposed a fault-tolerant triple triangular mesh protocol for mutual exclu-

sion. From our simulation study, the triple triangular mesh protocol can have higher availability

and less quorum size than the grid protocol. Moreover, the quorum size of the proposed protocol

will be less than that in the HQC protocol when N is greater than or equal to 15 and less than that

in the tree quorum protocol when node failures exist. Also, the triple triangular mesh protocol

can have higher availability than the tree protocol when p � 0�92 and N � 15. How to extend
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HQC Tree Grid TTM

(1) quorum size N0�63 log2N M1 �M2 � 1 �
p

2N �
(best case)

(2) quorum size N0�63 dN�1
2 e M1 �M2 � 1 �

p
2N �

(worst case)
(3) cost of one node failure 1 log2N M1 � 1 �

p
2N �� 1

(worst case)
(4) fully distributed? yes no yes no
(5) fault tolerance N �N0�63 N � log2N N � �M1 �M2� � 1 N � �

p
2N �

(best case)
(6) fault tolerance N0�63 � 1 log2N � 1 minfM1� M2g � 1 �

p
2N �� 2

(worst case)

Table 1: A comparison of four mutual exclusion algorithms imposing logical structures

the TTM protocol to tolerate even more node failures is the future research direction.
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